skip to main content


Search for: All records

Creators/Authors contains: "Chusuei, Charles C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A cobalt (II) oxide/carboxylic acid functionalized multiwalled carbon nanotube (CoO/COOH-MWNT) composite was fabricated for the biochemical detection of dopamine (DA). CoO particles were tethered to COOH-MWNTs by sonication. The current response versus different concentration was measured using cyclic voltammetry. Various parameters, including sonication time, pH, and loading were varied for the best current response. The composite with optimum current response was formed using a 30-min sonication time, at pH 5.0 and a 0.89 µg/mm2 loading onto the glassy carbon electrode surface. Good sensitivity with a limit of detection of 0.61 ± 0.03 μM, and dynamic range of 10–100 µM for DA is shown, applicable for neuroblastoma screening. The sensor was selective against ascorbic and uric acids. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Carbon dots (C-dots) were facilely fabricated via a hydrothermal method and fully characterized. Our study shows that the as-synthesized C-dots are nontoxic, negatively charged spherical particles (average diameter 4.7 nm) with excellent water dispersion ability. Furthermore, the C-dots have a rich presence of surface functionalities such as hydroxyls and carboxyls as well as amines. The significance of the C-dots as highly efficient photocatalysts for rhodamine B (RhB) and methylene blue (MB) degradation was explored. The C-dots demonstrate excellent photocatalytic activity, achieving 100% of RhB and MB degradation within 170 min. The degradation rate constants for RhB and MB were 1.8 × 10−2 and 2.4 × 10−2 min−1, respectively. The photocatalytic degradation performances of the C-dots are comparable to those metal-based photocatalysts and generally better than previously reported C-dots photocatalysts. Collectively considering the excellent photocatalytic activity toward organic dye degradation, as well as the fact that they are facilely synthesized with no need of further doping, compositing, and tedious purification and separation, the C-dots fabricated in this work are demonstrated to be a promising alternative for pollutant degradation and environment protection. 
    more » « less
  4. null (Ed.)
  5. Abstract

    Galactose (Gal), lactose (Lac), and glucose (Glu) derived carbon dots (CDs) were evaluated for their utility as electrochemical sensing composites using acetaminophen (APAP) as a probe molecule. The goal of this work is to ascertain the role of graphene defects on electrochemical activity. Higher sp2‐to‐sp3hybridized carbon ratios (in parentheses) in the CDs correlated with higher sensitivity in the order according to measured Raman IG/IDintensities: GluCDs (6.53)−3APAP range at pH=7.0 was achieved, suitable for practical APAP toxicity monitoring. Defect density within the GalCDs provided the highest sensitivity.

     
    more » « less